skip to main content


Search for: All records

Creators/Authors contains: "Macía, Manuel J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    The climate variability hypothesis proposes that species subjected to wide variation in climatic conditions will evolve wider niches, resulting in larger distributions. We test this hypothesis in tropical plants across a broad elevational gradient; specifically, we use a species‐level approach to evaluate whether elevational range sizes are explained by the levels of thermal variability experienced by species.

    Location

    Central Andes.

    Time Period

    Present day.

    Taxon

    Woody plants.

    Methods

    Combining data from 479 forest plots, we determined the elevational distributions of nearly 2300 species along an elevational gradient (~209–3800 m). For each species, we calculated the maximum annual variation in temperature experienced across its elevational distribution. We used phylogenetic generalized least square models to evaluate the effect of thermal variability on range size. Our models included additional covariates that might affect range size: body size, local abundance, mean temperature and total precipitation. We also considered interactions between thermal variability and mean temperature or precipitation. To account for geometric constraints, we repeated our analyses with a standardized measure of range size, calculated by comparing observed range sizes with values obtained from a null model.

    Results

    Our results supported the main prediction of the climate variability hypothesis. Thermal variability had a strong positive effect on the range size, with species exposed to higher thermal variability having broader elevational distributions. Body size and local abundance also had positive, yet weak effects, on elevational range size. Furthermore, there was a strong positive interaction between thermal variability and mean annual temperature.

    Main Conclusions

    Thermal variability had an overriding importance in driving elevational range sizes of woody plants in the Central Andes. Moreover, the relationship between thermal variability and range size might be even stronger in warmer regions, underlining the potential vulnerability of tropical montane floras to the effects of global warming.

     
    more » « less
  2. null (Ed.)
  3. Abstract We introduce the FunAndes database, a compilation of functional trait data for the Andean flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, for a total of 105,466 entries. The database features plant-morphological attributes including growth form, and leaf, stem, and wood traits measured at the species or individual level, together with geographic metadata (i.e., coordinates and elevation). FunAndes follows the field names, trait descriptions and units of measurement of the TRY database. It is currently available in open access in the FIGSHARE data repository, and will be part of TRY’s next release. Open access trait data from Andean plants will contribute to ecological research in the region, the most species rich terrestrial biodiversity hotspot. 
    more » « less
  4. Abstract Aim

    We examined tree beta diversity in four biogeographical regions with contrasting environmental conditions, latitude, and diversity. We tested: (a) the influence of the species pool on beta diversity; (b) the relative contribution of niche‐based and dispersal‐based assembly to beta diversity; and (c) differences in the importance of these two assembly mechanisms in regions with differing productivity and species richness.

    Location

    Lowland and montane tropical forests in the Madidi region (Bolivia), lowland temperate forests in the Ozarks (USA), and montane temperate forests in the Cantabrian Mountains (Spain).

    Methods

    We surveyed woody plants with a diameter ≥2.5 cm following a standardized protocol in 236 0.1‐ha forest plots in four different biogeographical regions. We estimated the species pool at each region and used it to recreate null communities determined entirely by the species pool. Observed patterns of beta diversity smaller or greater than the null‐expected patterns of beta diversity implies the presence of local assembly mechanisms beyond the influence of the species pool. We used variation‐partitioning analyses to compare the contribution of niche‐based and dispersal‐based assembly to patterns of observed beta diversity and their deviations from null models among the four regions.

    Results

    (a) Differences in species pools alone did not explain observed differences in beta diversity among biogeographic regions. (b) In 3/4 regions, the environment explained more of the variation in beta diversity than spatial variables. (c) Spatial variables explained more of the beta diversity in more diverse and more productive regions with more rare species (tropical and lower‐elevation regions) compared to less diverse and less productive regions (temperate and higher‐elevation regions). (d) Greater alpha or gamma diversity did not result in higher beta diversity or stronger correlations with the environment.

    Conclusion

    Overall, the observed differences in beta diversity are better explained by differences in community assembly mechanism than by biogeographical processes that shaped the species pool.

     
    more » « less
  5. Summary

    Recent studies have demonstrated that ecological processes that shape community structure and dynamics change along environmental gradients. However, much less is known about how the emergence of the gradients themselves shape the evolution of species that underlie community assembly. In this study, we address how the creation of novel environments leads to community assembly via two nonmutually exclusive processes: immigration and ecological sorting of pre‐adapted clades (ISPC), and recent adaptive diversification (RAD). We study these processes in the context of the elevational gradient created by the uplift of the Central Andes.

    We develop a novel approach and method based on the decomposition of species turnover into within‐ and among‐clade components, where clades correspond to lineages that originated before mountain uplift. Effects of ISPC and RAD can be inferred from how components of turnover change with elevation. We test our approach using data from over 500 Andean forest plots.

    We found that species turnover between communities at different elevations is dominated by the replacement of clades that originated before the uplift of the Central Andes.

    Our results suggest that immigration and sorting of clades pre‐adapted to montane habitats is the primary mechanism shaping tree communities across elevations.

     
    more » « less
  6. null (Ed.)